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In a usual crystallization process, the researchers evaluate the

protein crystallization growth states based on visual impres-

sions and repeatedly assign scores throughout the growth

process. Although the development of crystallization robotic

systems has generally realised the automation of the setup and

storage of crystallization samples, evaluation of crystallization

states has not yet been completely automated. The method

presented here attempts to categorize individual crystal-

lization droplet images into five classes using multiple

classifiers. In particular, linear and nonlinear classifiers are

utilized. The algorithm is comprised of pre-processing, feature

extraction from images using texture analysis and a categor-

ization process using linear discriminant analysis (LDA) and

support vector machine (SVM). The performance of this

method has been evaluated by comparing the results obtained

using the method with the results obtained by a human expert

and the concordance rate was 84.4%.
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1. Introduction

For high-throughput protein structure determination by X-ray

crystal structure analysis, the crystallization process is the first

requisite. Therefore, there have been several attempts to

achieve high-throughput crystallization (Stevens, 2000; Suga-

hara et al., 2002). Through the development of robotic systems,

the efficiency of crystallization work has seen rapid improve-

ments. However, the observation process has not yet been

completely automated, so that researchers must still keep

samples under observation.

In previous work, methods related to automating the

evaluation of crystallization droplets have been proposed

(Bodenstaff et al., 2002; Echalier et al., 2004; Cumbaa et al.,

2003; Zuk & Ward, 1991; Rupp, 2003; Gester et al., 2003). All

these publications mainly discuss discrimination between the

presence or absence of a crystal.

However, in addition to detecting crystals, it is also very

important and valuable to observe and evaluate the crystal-

lization growth states from start to finish. Several methods for

evaluating crystallization growth states have been proposed.

Spraggon et al. (2002) used texture analysis and a self-

organizing neural network to categorize individual crystal

trials into six classes. Bern et al. (2004) used the Hough

transform and curve tracking and classified several states as 0

(empty), 1 (clear), 2 (precipitate), 3 (microcrystal) or 4

(crystal) using C5.0. Jurisica et al. (2001) used a two-dimen-

sional Fourier transform and classified five distinct classes.

Adams et al. (2002) extracted 11 features from images

acquired by a RoboMicroscope II system and classified the



droplets into four classes. Wilson (2002) utilized Bayes

theorem and categorized the objects in the crystallization

droplets into three classes based on size, shape, curvature of

the boundary and the variance in intensity etc. Miyatake et al.

(2005) also developed an automated crystallization/observa-

tion robotic system, HTS-80, which was reported to be able to

categorize the crystallization droplet status into four stages

based on extracted contour information.

In our previous work (Saitoh et al., 2005), we reported the

evaluation of incipient growth states of protein crystallization

using texture information from greyscale crystallization

images and statistical analysis, with the aim of achieving a

categorization accuracy of more than 80% in each individual

class. This method is one of the most highly efficient methods

of evaluating the crystallization state.

However, these methods apply a single classifier to evaluate

the image of the crystallization droplet and there was no

consideration of the possibility of utilizing more than one

classifier for a more accurate evaluation. Generally, in terms of

statistical theory, an accurate performance can be achieved for

a decision from discrimination results using multiple classi-

fiers. Therefore, it is expected that a smaller evaluation error

will be realised by applying multiple classifiers.

An integrated evaluation method that utilizes two classifiers

is presented and the experimental results are reported. The

method evaluates crystallization states to combine the

computed results from both a linear classifier and a nonlinear

classifier. LDA is used as the linear classifier and SVM is

utilized as the nonlinear classifier.

2. Crystallization growth evaluation utilizing images

Structural genomics projects are expected to produce a large

number of proteins from various organisms every year and so

an efficient protocol will need to be established to obtain

crystals suitable for X-ray structural analysis. Sugahara et al.

(2002) have developed a fully automated protein crystal-

lization and observation system, TERA. Fig. 1 shows examples

of crystallization droplet images taken by TERA.

The growth states of protein crystallization take many

aspects; for example, precipitate, amorphous agglutinate,

crystals with varied shapes and combinations of these. In order

to respond to these variations, RIKEN has developed ten

standard categories for evaluation, as shown in Fig. 2.

A brief description of each RIKEN standard category is

given below.

0, clear drop

1, precipitate (i). Creamy and grainless precipitate.

2, precipitate (ii). Fine or granulated sugar-like precipitate.

3, precipitate (iii). Amorphous state.

4, amorphous grain. Circular grain

5, microcrystal (size of 50 mm or less).

6, crystal (i). Needle crystal or plate crystal.

7, crystal (ii). Cluster of crystals.

8, crystal (iii). Single crystal (0.05–0.2 mm).

9, crystal (iv). Single crystal (greater than 0.2 mm).

Our target classification, which is a reclassification of the

RIKEN system, is shown in Fig. 2 and is the same as that used

for categorization in our previous work (Saitoh et al., 2005).

Categories 4 (amorphous grain) to 9 [crystal (iv)] are placed

together into one category (E) and all samples are classified

into five categories from A to E.

3. Pre-processing and feature extraction

The method used for evaluation of the crystallization growth

states uses a process flow consisting of feature extraction and

classification. Generally, in the pre-processing phase the input

images are processed for noise, normalization and so on.

Feature extraction entails the extraction of features used for

classification from the original images. The classification

process classifies the input images using these features.

Before the feature-extraction process, some pre-process

steps are performed. The original images are photographed by

TERA using a microscope at 40� magnification. The image

size is 1392 � 1040 pixels. Initially, the original colour images

are transformed into 256-level greyscale images because the

colour information is not utilized in the method. A portion of

the original image from inside the well is then manually

extracted. The object used for processing in this study is

assumed to only be inside the well. The extract size is 150 �

150 pixels, which is determined by considering an approxi-

mated average size for microcrystals and crystals in the

original images. Finally, the extracted image is differentiated

with a Sobel first-order differential filter. This process high-

lights the characteristic pattern of the image. Both differ-

entiated and non-differentiated images are utilized in this

method.

In the computational image analysis, texture analysis,

smoothing, sharpening and edge-detection/enhancement are

often utilized for quantifying images (Takagi & Shimoda,

1991). In our proposed method (Saitoh et al., 2005), we

introduced texture analysis (Haralick et al., 1973), which

quantifies the array of greyscale values of each pixel in an

image for use in extracting features from the crystallization

images. In our previous work (Saitoh et al., 2005), we have

already discussed those features that are effective for accurate

classification.

Texture-feature values are calculated using a grey-level co-

occurrence matrix. Fig. 3 shows the algorithm for deriving the

matrix. Each element of the matrix P�(i, j) in Fig. 3(b)

expresses the probability that the greyscale value of a pixel is i

and the greyscale value of another pixel located at r pixels

away in the � direction from the former pixel is j (Fig. 3a). The

displacement between the two pixels is denoted � = (r, �). The

distance between pixels, r, used to calculate the co-occurrence

matrices has a value of 1. The directions � are 0, 45, 90, 135�

and correspond to the horizontal, the vertical and two diag-

onals. If nothing is done, the features are calculated aniso-

tropically. However, the crystallization growth states are not

anisotropic, so the average of the results calculated from the

four directions is used. 14 texture features can be calculated

using the matrix P�.
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As is mentioned above, in this

process both differentiated and non-

differentiated images are utilized for

classification. Thus, the total number of

types of feature values is 28 (14 are

extracted from the differentiated image

and 14 from the non-differentiated

image).

4. Classifiers and classification
procedure

It is possible to use any classifier as the

element classifier of each node. In this

section, the linear and nonlinear classi-

fiers which are utilized in the method

are presented and the basic classifica-

tion algorithm is described.

4.1. Classifiers

4.1.1. Linear discriminant analysis
(LDA). In this method, LDA, which is

a standard technique for multivariate

analysis, is used as the linear classifier to

classify the feature vector.

LDA (Fisher, 1936) is used to

compute a linear discriminant function

that divides the feature space into two

groups. A discriminant space is

constructed from the linear transfor-

mation

LDAgðuÞ ¼ ATuþ a0;

where A is a coefficient matrix, u is a

texture-feature vector and a0 is a

constant involving A. The coefficient

matrix A is computed so that the

discriminant criterion

J�ðAÞ ¼
AT�BA

AT�WA
;

may be maximized, where �B and �W

are the between-class covariance matrix

and within-class covariance matrix,

respectively. To classify a new input

vector, g(u) is computed to determine

the class, depending on its positive or

negative sign (Fig. 4).

4.1.2. Support vector machine
(SVM). SVM (Vapnik, 1995) is applied

as the nonlinear classifier. SVM is a

technique that is well founded in

statistical learning theory and is used to

train classifiers, regressors and prob-

ability densities (Fig. 5). One of the

main attractions for using SVM is that it
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Figure 2
The ten categories for evaluation set by RIKEN incorporated by the target categories. A, B, C, D
and E indicate the target categorization in this paper. Images are taken from a part of the well in the
full drop images.

Figure 1
Examples of drop images taken with TERA (developed by RIKEN). The image size is 1392 � 1040
pixels and the well is visible in the centre.



is capable of learning in sparse high-dimensional spaces with

very few training examples. SVM accomplishes this by

simultaneously minimizing the bounds of empirical error and

the complexity of the classifier. The following is a brief over-

view of the main concepts of SVM.

SVM performs pattern recognition for two-class problems

by determining the separating hyperplane with a maximum

distance to the closest points of the training set. These points

are called support vectors. If the data is not linearly separable

in the input space, a non-linear transformation �(�) can be

applied which maps the data points u into a high-dimensional

space H, which is called the feature space. The data in the

feature space is then separated by the optimal hyperplane

described above.

The mapping transformation, �(�), is represented in the

SVM classifier by a kernel function, K(�, �), which defines an

inner product in H; i.e. K(u, u0) = �(u)T�(u0). The deter-

mining function of the SVM has the form

SVMg½�ðuÞ� ¼
Pm

i¼1

aiyiKðu; uiÞ;
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Figure 4
Linear discriminant analysis. g(u) divides the feature space into two
groups. A discriminant space is constructed from the linear transforma-
tion g(u) = ATu + a0. Input data are classified depending on their sign.

Figure 5
Support vector machine (SVM) is a technique that is well founded in statistical leaning theory and is used to train classifiers, regressors and probability
densities.

Figure 3
Algorithm used to derive the grey-level co-occurrence matrix. Texture-feature values are then calculated using the grey-level co-occurrence matrix [P� in
(b)]. (a) Each element of the matrix expresses the probability that the greyscale value of one pixel is i and the greyscale value of another pixel located r
pixels away in the � direction from the former pixel is j. The parameters r = 1 and � = 0, 45, 90 and 135� are used in this work.



where m is the number of data points and yi 2 {�1, 1} is the

class label of training points xi. The coefficient �i can be found

by solving a quadratic with linear constraints. The support

vectors are the nearest points to the separating boundary and

are the only ones for which �i can be non-zero.

Examples of admissible kernel functions are the polynomial

kernels

Kðu; u0Þ ¼ ðuTu0 þ 1Þd;

where d is the degree of the polynomial, and the Gaussian

kernels

Kðu; u0Þ ¼ expð�jju� u0jj=2�2Þ;

where � is the variance of the Gaussian function. In this work,

the Gaussian kernel is utilized.

4.2. Classification procedure and classification by each
classifier

Our target categorization is five classes from A to E. In

order to realise this categorization, the classifier is applied step

by step for two classes. Four discriminant functions,
jg1, jg2, jg3, jg4 (j = LDA, SVM), are computed by each clas-

sifier. The grouping and the sequence of the discrimination

process were decided as shown in Fig. 6. When the functions
jg1, jg2 and jg4 (j = LDA, SVM) are derived, the texture-feature

values calculated from differentiated images are used. In case

of the function jg3 (j = LDA, SVM), the feature values are

calculated from non-differentiated images.

For classification, both of differentiated and non-

differentiated images are utilized. 14 feature values are

derived from each type of image. The total number of kind of

feature values is 28.

The classification experiments are performed using the

abovementioned classifiers. The performance of each classifier

is evaluated based on how the classification results are in

concordance with those provided by a human expert.

The data set for performance evaluation contains 874

images obtained with TERA that were annotated by a human

expert at RIKEN. The number of images in each category is as

follows: A (clear), 102; B [precipitate (i)], 116; C [precipitate

(ii)], 78; D [precipitate (iii)], 90; E (amorphous grain, micro-

crystal, crystal), 488. Category E has over five times more

images than the other categories, because the images were

acquired to maintain an approximately constant number from

each of the ten categorizations set by RIKEN. Of the total 874

images, 435 (A, 49; B, 45; C, 49; D, 49; E, 243) images were

used as the training set and 439 (A, 53; B, 71; C, 29; D, 41; E,

245) were used as the test set. Those training images in which

some artifacts were present in the crystallization drop were

removed in advance.

The evaluation results using LDA with the test set are given

in Table 1. The results obtained using LDA were compared

with the results from the human expert (manual classification;

Table 1) and the concordance rates were calculated by the
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Table 1
Results of classification with LDA.

The results obtained using LDA are compared with the results obtained by an
expert (manual classification). The overall accuracy is 80.47%.

Classification with LDA

Total A B C D E F

Manual
classification

A 53 51 1 1 0 0 0
B 71 3 52 15 0 1 0
C 29 0 1 22 4 2 0
D 41 0 0 2 31 8 0
E 245 0 1 2 13 229 0

Accuracy (%) 94.44 94.55 52.38 64.58 95.42

Table 2
Results of classification with SVM.

The results obtained using SVM are compared with the results obtained by an
expert (manual classification). The overall accuracy is 80.07%.

Classification with SVM

Total A B C D E F

Manual
classification

A 53 51 2 0 0 0 0
B 71 0 46 21 2 2 0
C 29 0 0 20 2 7 0
D 41 0 0 0 27 14 0
E 245 0 0 1 10 234 0

Accuracy (%) 100.0 95.83 47.62 65.85 91.05

Table 3
Results of classification using both LDA and SVM.

The results obtained using both LDA and SVM are compared with the results
from an expert (manual classification). The overall accuracy is 84.84%.

Classification with LDA and SVM

Total A B C D E F

Manual
classification

A 53 50 1 0 0 2
B 71 0 44 12 0 1 14
C 29 0 0 17 1 1 10
D 41 0 0 0 25 7 9
E 245 0 0 1 8 229 7

Accuracy (%) 100.0 97.78 56.67 73.53 96.22

Figure 6
Discrimination procedure. The procedure consists of two steps. (1) The
input data is classified into A, B or C, D or E using the functions jg1 and
jg2. (2) The data is classified into A or B or C or D using the functions jg3

and jg4 (j = LDA, SVM)



expression (accuracy) = (the number of images classified

correctly)/(total number) � 100. Class F (Table 1) was desig-

nated for samples that were not categorized into any other

classes (A–E). Of all the images, 80.47% were classified into

the same category as manually classified by an expert.

The evaluation results obtained using SVM with the test set

are given in Table 2. The parameters used for the SVM are as

follows: for SVMg1, � = 0.01, c = 200; for SVMg2, � = 0.01, c = 200;

for SVMg3, � = 0.1, c = 20; for SVMg4, � = 0.1, c = 1000, where � is

the variance of the Gaussian function and c indicates the SVM

misclassification tolerance parameter.

The parameters were determined by estimating the

performance of each function. The results obtained using

SVM were compared with the results obtained from the

human expert. The average accuracy of classification obtained

using the SVM is 80.07%.

5. Integrated evaluation combining the results from
two classifiers

In this section, an integrated evaluation method is discussed.

The linear and non-linear discrimination methods have been

described. Finally, these two classifiers are combined to

achieve a more accurate evaluation.

The proposed method employs LDA and SVM, which are

both noteworthy for their efficiency in two-class identification.

Fig. 7 shows the evaluation process of the method. The

evaluation sequence is as follows.

(i) Pre-process to cutoff image and generate greyscale and

differentiated images.

(ii) Extract texture information (14 feature values) from

pre-processed image (both of differentiated image and non-

differentiated image). This is performed to extract 28 feature

values from each cutoff image.

(iii) Evaluate each image utilizing the extracted feature

values from both of the classifiers (derived by LDA and SVM

algorithms), independently.

(iv) Compare the results from both of the classifiers for

integrated evaluation. When the results of LDA and SVM

processing are equivalent, the evaluation is adopted. When

the results are not equivalent, the evaluation is denoted class F

(unknown).

The evaluation result obtained using the test set is given in

Table 3. The results obtained using the combined LDA and

SVM classification method were compared with the results

from a human expert. Of all the images, 84.84% were classified

into the same category as that manually classified by an expert.

6. Summary

A method for the evaluation of protein crystallization states

based on two classifiers has been presented. The method

classifies the images into five groups. The images taken by the

automated crystallization system TERA are used and a

texture-analysis method is utilized to extract feature values

from each image.

In our previous work, a basic classification procedure was

presented based on texture information and linear discrimi-

nant analysis that utilized step-by-step classification of

samples into five groups. In this work, the method is extended

to utilize two classifiers for a more accurate classification.

Evaluation results from each classifier are compared with each

other and when the score is the same, the score is accepted as

an acceptable evaluation.

Of those images classified (100% successful classification

without unknowns), the method provides 84.84% accuracy

and concordance with expert observations. The results from

combined classification show a more accurate collection

performance than the results using each classifier individually.

Future work will consider examination of how to combine

plural classifiers to realise more accurate evaluation.

This work has been partially supported by a research grant

of the Okawa Foundation for Information and Tele-

communication (05-23).
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